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Standard setup

Consider a sample of realisations of n random variables X1, . . . ,Xn, that are
independent and identically distributed (i.i.d.) normal; i.e. Xi ∼ N (µ, σ2) for all
i = 1, . . . , n, with µ ∈ R and σ2 < ∞. Then,. . .

This is the standard setup of many basic results in probability and statistics. It is
easy to skim past what it entails. However, it instantly imposes a set of fairly
strict assumptions:

Full independence

Normality

Homoskedasticity (same variance)

Common mean

Finite variance
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Asymptotic case

Alternatively, we often rely on the Central Limit Theorem to relax the normality
assumption:

Central Limit Theorem

For X1, . . . ,Xn i.i.d. (any distribution) with mean E[X1] =: µ, letting
X̄ :=

∑n
i=1 Xi be the empirical mean, there exists σ2 such that

√
n
(
X̄ − µ

) d−→ N (0, σ2)

as n → ∞.

This theorem introduces approximate Gaussianity through the use of X̄ in an
asymptotic setup.
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Back to reality

In real life, we might very well have non-normal, dependent and heteroskedastic
data in a relatively small sample. What happens then?

In general, theoricians impose various assumptions to control their mathematical
framework, allowing for rigorous results to use in applications. Relaxing those
assumptions to make methods based on them more universal is an active process
that we will briefly discuss here through different examples.
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Structures of interest

Although it can be difficult to observe dependence in data, some particular
structures can be guessed to exist based on the context.

Two of the most common cases are

serial correlation, for time-dependent data;

spatial correlation, for geographical data.
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Serial correlation

Consider a variable Xt observed at various times t ∈ N:

Xt−2 Xt−1 Xt Xt+1

From a probability perspective, the sequence of random variables {Xt}t∈N is called
a (discrete) random process. The equivalent data sample is usually referred to as
a time series.

It is natural for the variable in t − 1 to be correlated with the one in t. By
extension, any variable Xt will be somewhat correlated with any variable Xt−s for
some s ∈ Z.

This concept is called serial correlation or autocorrelation.
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Spatial correlation

One can extend the index space to multidimensional cases too.
For example, consider a spatial process in two dimensions, i.e. data points indexed
on a map:

X(1,1)

X(1,2)

X(1,3)

X(2,1)

X(2,2)

X(2,3)

X(3,1)

X(3,2)

X(3,3)

It is once again natural to expect correlation
between neighbouring points.
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Example of consequences

The presence of correlation between data points can cause issues in a number of
procedures, since it violates the independence assumption that is often required
for valid inference.

We will consider a case that is well discussed in the literature: correlated error
terms in regression models.
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Ordinary Least Squares regression I

Practitioners often want to study the link between variables of interest. The most
widely used model for this problem is a linear one.

Suppose that we want to estimate the effect of some variables X1, . . . ,Xk on a
variable of interest Y .

A linear regression model will assume that one can write the relationship between
(X1, . . . ,Xk) and Y as

Y = β0 + β1 ∗ X1 + . . .+ βk ∗ Xk + ε,

where β0, β1, . . . βk are called the regression coefficients and ε is the error term.

Here, the β’s are not known; we need to estimate them.
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Ordinary Least Squares regression II

If we have n observations of each variable, we can write the equation like this:

Y1

...
Yn

 =

1 X11 . . . X1k

...
...

...
1 Xn1 . . . Xnk



β0

β1

...
βk

+

ε1
...
εn

 ,

or equivalently in matrix terms:

Y = Xβ + ε.

In this model, the error term ε is always (at least) assumed to have mean zero (so
E[ε] = 0).
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Ordinary Least Squares regression III

Since we do not know β, we need to estimate it. The most common way to do
that is to use the Ordinary Least Squares (OLS) estimator:

β̂OLS := (X⊤
X )−1

X
⊤
Y

It is built to minimise the squared distance between the predicted values
Ŷi := Xi β̂OLS and the real ones Yi .

Assume that the errors are independent with common variance σ2 < ∞
(homoskedastic).

This estimator is then unbiased, i.e. E
[
β̂OLS

]
= β, and has the smallest variance

amongst other unbiased linear estimators (so it is the most precise one).
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OLS under heteroskedastic or correlated errors

Many reasons can cause the errors to be correlated or heteroskedastic (for
example, if there is a clear dependence structure in the data like described before).
What happens then?

Under correlated or heteroskedastic errors,

β̂OLS is still unbiased (good ,)

β̂OLS does not always have the smallest variance amongst unbiased linear
estimators (bad /)

This means that on average, we will estimate the correct value for β, but that we
lose (possibly a lot of) precision.
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Consequences on tests and workarounds

Another procedure that usually accompanies the regression is to test whether
some coefficient is equal to zero, i.e. testing

H0 : βi = 0 v.s. H1 : βi ̸= 0

for some i (usually done for all i).
This test is once again invalidated by correlated or heteroskadstic errors.

The main problem in both cases is that correlated or heteroskedastic errors mess
up the variance of β̂OLS .

The typical workaround is to try and estimate said variance and plug it in to
nullify the effect as much as possible.

This is really difficult, partly because it usually involves making assumptions
on the underlying dependence structure...

V. Meurice (ULB) Breaking assumptions 2023 18 / 41



Table of Contents

1 Basic assumptions

2 Dependence structures
Two typical processes
Correlated errors in linear regressions
Approximating independence: mixing coefficients
Back to testing regression coefficients

3 Tests, non-normality and small samples
Classical t-test and regression coefficients
Non-parametric tests

4 Conclusions

V. Meurice (ULB) Breaking assumptions 2023 19 / 41



Relaxing assumptions

Estimating the covariance structure and plugging it in the procedure is really
effective at mitigating negative effects of correlation, but is really hard to do.

As often when mathematicians need to deal with tricky assumptions, when
deleting them altogether is too much of a challenge, they try to simply relax them
instead.

What if we could mitigate the effect of autocorrelation by reaching some form of
approximate independence, or at least weaker correlation?
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Strongly stationary stochastic processes

Recall the stochastic (i.e. random) time process {Xt}t∈N described earlier:

Xt−2 Xt−1 Xt Xt+1

A first assumption that is widely used when studying such processes is stationarity.

Strongly stationary process

Let F (Xt1 , . . . ,Xtp ) represent the joint cumulative distribution function of Xt at
times t1, . . . , ttp .
Then, {Xt}t∈N is strongly stationary if

F (Xt1+τ , . . . ,Xtp+τ ) = F (Xt1 , . . . ,Xtp )

for all τ and t1, . . . , ttp and all p.

In non-mathy terms, the randomness structure does not evolve over time.

V. Meurice (ULB) Breaking assumptions 2023 21 / 41



Mixing processes: intuition

Consider (once again) a time process {Xt}t∈N.

Intuitively, an event really far back in the past should have much smaller influence
over what happens far into the future than, say Xt influences Xt+1.

Maybe we can formalise this and use it to our advantage?
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α-mixing processes

Let {Xt}t∈Z be a stochastic process.

α-mixing process

Define the mixing coefficients

α(s) := sup
t∈Z

{|P(AB)− P(A)P(B)| : A ∈ Ft
−∞,B ∈ Ft+s

+∞},

where Fb
a is the σ-algebra generated by {Xa,Xa+1, . . . ,Xb}.

Then, {Xt}t∈N is α-mixing if α(s) → 0 as s → ∞.

In brief:

The events A and B are the ones at least separated by s time increments

α(s) measures the maximum correlation between those kinds of events

α(s) → 0 as s → ∞ means that events in the past have less and less
influence over the future the more time passes, with the two being
asymptotically uncorrelated
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CLT for stationary processes
Ibragimov (1962)

This asymptotic independence property allows for some cool results, such as this
one:

CLT for stationary processes

Let the univariate stochastic process {Xt}t∈N be strongly stationary and α-mixing.
Assume that for some δ > 0,

(i) E
[
|X1|2+δ

]
< ∞ and

(ii)
∑∞

s=1 [α(s)]
δ

2+δ < ∞.

Then σ2 := E [X1 − E[X1]]
2 + 2

∑∞
j=1 E [(X1 − E[X1])(Xj − E[Xj ])] < ∞.

Morever, if σ ̸= 0 and E[X1] = 0, we also have

(σ
√
n)−1

n∑
j=1

Xj
d−→ N (0, 1).

as n → ∞.
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A clever way to use asymptotic independence
Ibragimov & Müller (2010), Meurice & Preinerstorfer (2021)

A workaround for the specific covariance structure problem when testing β = 0
was developped as follows.

(i) Divide the sample into q blocks of the same size

(ii) Estimate β̂(i) in each block (i = 1, . . . , q)

(iii) Test whether the mean of the new sample
{
β̂(1), . . . , β̂(q)

}
is equal to 0 (or

a function of it)

If the errors are α-mixing and follow Ibragimov’s CLT conditions, most of the
observations in one block will be asymptotically really far away from most of any
other block, making both blocks asymptotically uncorrelated.

Adding the result of Ibragimov’s CLT, this means that the new sample will be
approximately independent and normally distributed. We got our basic
conditions back!
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Classical t-test

In the previous example, we would want to test whether the βs’ sample had mean
zero or not. The classical procedure to do this is called the Student’s one sample
t-test.

Student’s t-test
Consider a sample of n i.i.d. random variables X1, . . . ,Xn such that
Xi ∼ N (µ, σ2) ∀i .
We would like to test

H0 : µ = µ0 v.s. H1 : µ ̸= µ0

for some chosen µ0 ∈ R. Define the test statistic

T :=

√
n
(
X̄ − µ0

)
σ̂

,

where X̄ is the sample mean and σ̂ the sample standard deviation.
Then, one would reject H0 at level α whenever |T | exceeds the 1− (α/2) quantile
of Student’s t-distribution with n − 1 degrees of freedom.
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t-test assumptions I

The classical t-test requires most usual assumptions, such as:

Independence

Normality

Homoskedasticity (constant variance)

The test on
{
β̂(1), . . . , β̂(q)

}
works, because

Independence is approximated by the α-mixing process

Normality is approximated through Ibragimov’s CLT

Homoskedasticity can actually be relaxed thanks to some result by Bakirov &
Szekely (2006) (not discussed here)
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t-test assumptions II

In general, what happens if we want to test the same hypotheses, have
independence and homoskedasticity but lack normality?

If we have a big sample, the classical Central Limit Theorem will mean X̄ will be
approximatively normal (which is what we need)

But what if we have a relatively small sample?
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Non-parametric tests

Non-parametric methods do not rely on assumptions regarding a specific
(parametric) distribution, usually allowing for a more universally valid use.

The drawback is that they are typically less effective and powerful than parametric
methods when those are applicable.

One of the most basic non-parametric options to test the mean value of a given
sample is called a sign test.
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Sign test I

Sign tests (including the sign test) rely only on some variant of the sign function
sgn of the observations:

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

In any i.i.d. sample of median 0 (equivalent to the mean for symmetric
distributions) of size n, the number of positive observations (i.e. sum of positive
signs) n+ follows a Binomial law n+ ∼ Bin(n, 1/2).
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Sign test II

One sample sign test

Suppose we observe a (small) sample X1, . . . ,Xn i.i.d. with some arbitrary
symmetric continuous distribution.
We would like to test

H0 : µ = µ0 v.s. H1 : µ ̸= µ0

for some chosen µ0 ∈ R.
Let n∗+ be the number of observations strictly greater than µ0.
Then, one would reject H0 at level α whenever n∗+ /∈ [bn,α/2, bn,1−(α/2)], where
bn,p is the p-quantile of the Bin(n, 1/2) distribution.
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Rank-based tests I

An other family of non-parametric methods for various location test problems is
the one of rank-based tests.

Considering (as always) a sample X1, . . . ,Xn, the rank of each observation R(Xi )
is the position in the sample after ordering it.

For example, say X1 = 6, X2 = 10 and X3 = 4.
Then, R(X1) = 2, R(X2) = 3 and R(X3) = 1.
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Rank-based tests II

In any i.i.d. (continuous) sample, the rank of each observation R(Xi ) follows a
Uniform{1, . . . , n} distribution.

Equivalently, the vector of all n ranks is distributed uniformly over the n!
permutations of {1, . . . , n}.

A basic example of how this is useful is as follows. Suppose you have two samples,
X1, . . . ,Xn with median µ and Y1, . . . ,Yn with median ν. We would want to test

H0 : µ = ν v.s. H1 : µ ̸= ν.
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Wilcoxon’s Rank sum test (intuition)

Without going into details, the rank sum test of Wilcoxon works as follows:

(i) Put both samples X and Y into one big common sample;

(ii) Compute the ranks of all observations in this new common sample;

(iii) Under the null (i.e. if µ = ν), on average, the ranks of the X ’s should be
similar to those of the Y ’s;

(iv) If the ranks of either sample average much greater values than the other’s,
reject H0.
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Conclusions

Classical assumptions are really useful, but can be violated easily.

Most assumptions can be relaxed to some extent. Mild dependence can be dealt
with in big samples, as does non-normality.

Bigger workarounds are required in small samples, as asymptotic results do not
apply anymore.
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